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Abstract: This paper proposes acceptance criteria for quantitative comparison 
metrics to be applied in the Verification and Validation (V&V) process  
of computational models used in roadside safety. Typically, the degree of 
verification or validation of a numerical model is assessed by qualitatively 
comparing the shapes of two curves, but qualitative comparisons are subjective 
and open to interpretation. Using quantitative comparison metrics in the V&V 
process allows for an objective measure of the reliability of a numerical  
model. Two comparison metrics were selected from a group of 16 metrics 
found in the literature. Acceptance criteria suitable to the typical scatter of  
full-scale crash tests were established by comparing ten essentially identical 
vehicle redirectional crash tests. Since the tests were as identical as can be 
achieved experimentally, the values of the quantitative metrics represented the 
reasonable range for the metric corresponding to matched experiments. Typical 
residual errors expected in full-scale tests are also discussed. 
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1 Introduction 

Assessing the degree of correspondence between two curves is a common task most 
engineers deal with daily. Often curves are compared either to verify or validate 
computer simulation models using data obtained from experimental tests or to assess the 
reproducibility of an experimental test (i.e. assess if different instances of the same test 
actually represent the same or similar physical events). 

While in the past it was common to compare curves using subjective judgements, 
recently much attention has been given to using quantitative comparison metrics to 
measure how well two curves compare to each other (AIAA, 1998; DoD, 2003; ASME, 
2006). As comparison metrics are mathematical measures of the agreement between two 
curves, they provide an objective way to compare a pair of curves. The many comparison 
metrics found in literature can be essentially grouped into two main categories:  
(1) deterministic and (2) stochastic metrics. Metrics within the deterministic group  
imply results are the same every time given the same input, while metrics  
of the stochastic group specifically address the statistical variation of experiments, 
calculation or both. In this paper, the behaviour of deterministic metrics only is 
investigated. Deterministic metrics can be further classified into three main types:  
(1) Magnitude-Phase-Composite (MPC) metrics, (2) single-value metrics and (3) 
Analysis of Variance (ANOVA) metrics. 

MPC metrics treat the curve magnitude and phase separately using two different 
component metrics (i.e. M and P, respectively). The M and P component metrics are then 
combined together into a single-value comprehensive metric, C. In all MPC metrics,  
the phase component (P) should be insensitive to the magnitude differences but sensitive  
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to differences in phasing or timing between the two curves. Similarly, the magnitude 
component (M) should be sensitive to differences in magnitude, but relatively insensitive 
to differences in phase. These characteristics of MPC metrics allow the analyst to  
identify the aspects of the curves that do not agree. For each component of the  
MPC metrics, zero indicates that the two curves are identical. The following five  
MPC metrics were found in literature: (1) Geers (1984), (2) Geers CSA (CSA, 1994),  
(3) Sprague-Geers (2003), (4) Russell (2006) and (5) Knowles-Gear (Schwer, 2007). 

Each of the MPC metrics differs slightly in its mathematical formulation. The 
different variations of the MPC metrics are primarily distinguished in the way the phase 
metric is computed, how it is scaled with respect to the magnitude metric and how it 
deals with synchronising the phase. In particular, the Sprague-Geers metric (Sprague and 
Geers, 2003) uses the same phase component as the Russell metric (Russell, 2006). The 
magnitude component of the Russell metric is peculiar as it is based on a base-10 
logarithm and it is the only MPC metrics among those found in literature to be symmetric 
(i.e. the order of the two curves is irrelevant). The Knowles-Gear metric (Schwer, 2007) 
is the most recent variation of MPC-type metrics. Unlike the previously discussed MPC 
metrics, it is based on a point-to-point comparison. In fact, this metric requires that the 
two compared curves are first synchronised in time based on the so-called Time of 
Arrival (TOA), which represents the time at which a curve reaches a certain percentage 
of the peak value. Typically, in literature the percentage of the peak value used to 
evaluate the TOA is 5%. Once the curves have been synchronised using the TOA,  
it is possible to evaluate the magnitude metric. Also, in order to avoid creating a gap 
between time histories characterised by a large magnitude and those characterised by a 
smaller one, the magnitude component M has to be normalised using the normalisation 
factor QS. 

Single-value metrics give a single numerical value that represents the agreement 
between the two curves. The following single-value metrics were found in literature:  
(1) correlation coefficient metric (Cohen et al., 2003), (2) NARD correlation coefficient 
metric (Basu and Haghighi, 1988), (3) Zilliacus error metric (Whang et al., 1993),  
(4) RSS error metric (Whang et al., 1993), (5) Theil’s inequality metric (Theil, 1975),  
(6) Whang’s inequality metric (Whang et al., 1993) and (7) regression coefficient metric 
(Cohen et al., 2003). The first two metrics are based on integral comparisons, while the 
others are based on point-to-point comparisons (i.e. residuals at each time step are 
considered). The analytical formulation of the MPC and Single-value metrics previously 
cited is shown in the Appendix. 

ANOVA metrics are based on the assumption that if two curves represent the same 
event then any differences between the curves must be attributable only to random 
experimental error (Ray, 1996; Oberkampf and Barone, 2006). The ANOVA is a 
standard statistical test that assesses whether the variance between two curves can be 
attributed to random error only. Conceptually, if two curves represent the same physical 
event, the mean residual error and the corresponding standard deviation should both be 
null; but, in practice, due to the presence of random experimental or numerical errors 
these two quantities are not exactly equal to zero. The conventional T-test represents an 
effective way to assess if the mean of the residual error is due to random errors only. 
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A review of the results and formulation of the metrics found in literature shows that 
there are really just three basic features of a shape comparison metric that are assessed: 
similarities in magnitude, similarities in phase and the shape of the residual error curve. 
The Sprague-Geers and the ANOVA metrics have been chosen as the best candidates in 
the Verification and Validation (V&V) process of computational models. In fact, while 
the Sprague-Geers metrics can assess the general similarity of magnitude or phase  
between the two curves, the ANOVA metric provides a direct assessment of the residual 
error, thereby supplying additional useful diagnostic information about the level of 
agreement. 

In this paper, acceptance criteria for the two mentioned comparison metrics are 
proposed for the V&V process of computational models to be applied in the simulation 
of full-scale crash tests in roadside safety. In fact, although the use of comparison metrics 
allows an objective quantification of the reliability of the numerical model, developing 
acceptance criteria often relies on imprecise engineering judgement. Criteria suitable to 
represent the typical scatter of full-scale crash tests were established in this study by 
comparing ten essentially identical full-scale vehicle crash tests. Since the tests were  
as identical as can be achieved experimentally, the average values of the comparison 
metrics represented the reasonable range to asses a good match between two tests. 
Eventually, acceptance criteria for the two selected comparison metrics were proposed 
for the comparison of curves with such a noticeable scatter like in full-scale crash tests. 
The proposed criteria were also considered appropriate for comparing experimental and 
numerical results for the purpose of V&V of numerical models. 

2 Repeated full-scale crash tests 

A series of five crash tests (Set 1) with same new vehicles (i.e. 2000 Peugeot 106) and  
a rigid concrete barrier were performed as a part of the ROBUST project (ROBUST, 
2006). The tests were independently carried out by five different test laboratories in 
Europe, herein called Labs #1 to #5, with the purpose of assessing the reproducibility of 
full-scale crash tests. As the main intent was to see whether experimental curves 
representing the same test resulted in similar responses, a rigid barrier was intentionally 
chosen in order to limit the scatter of the results (which is typically greater in the case of 
deformable barriers). In order to investigate the influence arising from different vehicle 
models on the reproducibility of crash tests, a second series of five tests (Set 2) was 
performed using the same barrier but with vehicles of different brands and models. All 
the vehicles used in the series, however, corresponded to the standard 900-kg small test 
vehicle specified by the European crash test standards, EN 1317 (CEN, 1998). In all 
cases, the three components of acceleration were measured at the vehicle centres of 
gravity. For reasons of conciseness and because the lateral response is generally thought 
to be the more critical in this type of redirectional tests, only lateral accelerations and 
velocities are discussed in this paper. 

 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

    Acceptance criteria for validation metrics in roadside safety 73    
 

    
 
 

   

   
 

   

   

 

   

       
 

In order to compare the different time histories, it was necessary to prepare them  
by performing the following operations: (1) filtering, (2) re-sampling, (3) synchronising 
and (4) trimming. All these pre-processing operations as well as the following metrics 
evaluation were performed using a program written in Matlab® (MathWorks Inc., 2008). 

One common method for assessing the validity of a simulation result or the 
reproducibility of multiple impact experiments in the biomechanics field is to develop 
response envelopes. If multiple experiments are available, the time histories for all the 
experiments can be plotted together. If the average response and standard deviation  
are calculated at each instant in time, the ±90th percentile envelope indicating the  
likely response corridor can be plotted. After the ten curves were pre-processed, the  
90th percentile envelope for each of the two sets of tests, Set 1 (same new vehicle) and 
Set 2 (similar vehicles), was computed considering as the ‘true’ curve the response from 
the test of Lab #1 belonging to each set, respectively. The 90th percentile envelope for 
each set was evaluated by adding and subtracting to the respective ‘true’ curve the 
average of the standard deviations of the residuals for each specific set of tests multiplied 
by 1.6449 (i.e. the 90th percentile). Figure 1 shows the pre-processed curves and the 
respective envelopes for both Set 1 and Set 2. Also, all the ten tests from both sets were 
compared together considering the response of test Lab #1 from Set 1 as the ‘true’ curve 
and the results are shown in the bottom portion of Figure 1. 

As expected, there is considerable scatter between the acceleration time histories 
shown in Figure 1 although there is also a clear trend. Any test response that falls within 
the response corridors shown in Figure 1 should be considered identical or at least 
equivalent impact events. As shown by the response envelopes, all ten experiments tend 
to remain inside the response envelopes although the test from Lab #4 in Set 2 has 
several peaks that are outside the response corridor. While calculating response corridors 
is a very useful technique, at least five experiments must be available before a corridor 
can be constructed and the level of confidence (i.e. the width of the corridor) will be 
wider the smaller the number of samples is. In roadside safety, the normal situation is 
that there is generally only one experiment. As a response corridor cannot be obtained 
from just one or two experiments, if an analyst desires to compare a single computational 
result to a single crash test experiment, the response corridor method is not a feasible 
option. 

When comparing a computational result to an experiment, the analyst must decide 
what constitutes a reasonable acceptance criterion. While the metrics themselves are 
deterministic, a subjective judgement still has to be made about how close to zero  
(i.e. zero is a perfect match for all the metrics considered in this paper) is ‘good enough’. 
Since all ten of the experiments discussed in this paper represent identical tests, the range 
of values observed should be an indicator of the acceptable range of scores for more  
or less identical tests. The purpose of this work, therefore, is to provide insight on 
acceptance criteria when using the proposed comparison metrics. 
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Figure 1 Ninetieth percentile envelope and acceleration time histories for (a) Set 1,  
(b) Set 2 and (c) Set 1 and Set 2 combined (see online version for colours) 

(a)Set #1  

(b) Set #2  

(c) Sets #1 and #2 combined  
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3 Results using acceleration time histories 

Once the time histories for the ten experiments were pre-processed, each was compared 
to the ‘true’ curve by evaluating the Sprague-Geers and ANOVA metrics using Matlab®. 
Initially, the two sets of tests, Set 1 with the same new vehicle and Set 2 with similar 
vehicles, were considered separately using the response from the Lab #1 test in each set 
as the ‘true’ curve. The choice of Lab #1 to represent the ‘true’ curve was arbitrary and it 
is reasonable to expect slightly different results if another test were used as the ‘true’ 
baseline test. Therefore, the question being evaluated in this paper is: ‘Are the results 
from Lab #1 the same as those reported by Lab #2 to Lab #5?’ The resulting metric 
values for Set 1, Set 2 and the combination of both sets are shown in Table 1 in the top, 
middle and bottom portions, respectively. 

3.1 Sprague-Geers metric 

3.1.1 Magnitude difference 

The upper portion of Table 1 shows the values for the Sprague-Geers metric.  
The magnitude component of the metric is negative for all four of the comparison 
experiments indicating that the ‘true’ experiment generally experienced a higher 
magnitude. As shown by Schwer (2007), the amount of the magnitude score is roughly 
equal to the percent difference in magnitudes. In the case of Set 1, it varies between 14 
and almost 26%. The last column in Table 1 shows possible acceptance criteria which are 
based on calculating the 90th percentile value of the observed metrics (i.e. the mean plus 
1.67 times the standard deviation). As the sign of each comparison metric simply 
depends on which curve is greater and the focus of this paper is to define general 
acceptance criteria, the mean and the standard deviation for each set of data have been 
calculated using the absolute value of the metric results. 

Even when the same make and model of vehicle is used, the acceleration time 
histories under identical impact conditions can vary as much as nearly 30% in magnitude. 
The results for Set 2, where different vehicle meeting the EN 1317 small car test vehicle 
criteria were used, are similar although the experiment from Lab #4 experienced a much 
higher magnitude score indicating that Labs #2, #3 and #5 tended to have smaller 
magnitudes than the Lab #1 (‘true’ test) and Lab #4 had a much higher magnitude. This 
is actually confirmed by the time history graphs in Figure 1 where the results for Lab #4 
are clearly higher and even cross outside the response corridor. The large difference 
between Lab #4 and the other tests of this set of tests is reflected in the much larger  
absolute standard deviation of Set 2 compared to that of Set 1 (i.e. 14.74 vs. 4.85). It is 
not clear whether the differences between Sets 1 and Set 2 are due to the differences in 
the vehicles or the one unusual test from Lab #4 in Set 2. 

When the magnitude component of the Sprague-Geers metric is combined for all  
ten tests, as shown in the bottom portion of Table 1, the mean absolute score is 20.13. 
The absolute standard deviation of the results is nearly 4.60. If the 90th percentile value 
were used to establish an acceptance criterion for the magnitude component, a value  
of 27.7 would be the result. 
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Table 1 Comparison metrics for Set 1, Set 2 and the combination of both sets 

Metric Lab #2 Lab #3 Lab #4 Lab #5 Meana Std. dev.a
Possible acceptance 

criteria 
Dataset 1 

Sprague-Geers 
   Magnitude –23.0 –21.4 –14.4 –25.8 21.2 4.85 ±29.2 
   Phase 21.8 28 25.8 22.9 24.6 2.81 ±29.3 
ANOVA 
   Avg. residual error 0.00 –0.01 –0.01 0.00 0.005 0.006 ±0.01 
   Std. dev. of residuals 0.19 0.24 0.23 0.20 0.22 0.02 0.25 
   T-score –1.51 –1.87 –2.56 1.31   2.67 

Dataset 2 
Sprague-Geers 
   Magnitude –2.6 –8.2 35.6 –9.3 13.92 14.74 ±38.2 
   Phase 21.2 22.8 25.4 26.7 24.0 2.49 ±28.2 
ANOVA 
   Avg. residual error –0.01 0.00 0.00 –0.02 0.007 0.009 ±0.02 
   Std. dev. of residuals 0.21 0.22 0.31 0.25 0.25 0.05 0.32 
   T-score –2.3 0.66 –0.23 –6.27   2.67 

Datasets 1 and 2 (combined) 
Sprague-Geers 

   Magnitude See Table 5 in the Appendix 
for individual scores 20.13 4.60 ±27.7 

   Phase  27.2 3.60 33.2 
ANOVA 
   Avg. residual error  –0.01 0.01 ±0.02 

   Std. dev. of residuals See Table 5 in the Appendix 
for individual scores 0.24 0.04 0.31 

   T-score    2.67 
 aThe mean and standard deviation are calculated based on the absolute value of  

the metrics. 

3.1.2 Phase difference 

The result for the phase component is similar to what obtained for the magnitude 
component as shown in Table 1. Due to the formulation (see the Appendix for details) 
the values for the phase component must always be positive, so it is not possible to 
determine from the metric value whether the test curve is leading or lagging the true 
curve in phase. For Set 1, the values varied from just below 22 to 28 with an absolute 
mean and standard deviation of 24.6 and 2.81, respectively. The phase component of the 
metric can be interpreted as being the percent out of phase of the signal. 

The results for Set 2 were very similar and actually resulted in a smaller standard 
deviation than Set 1 possibly indicating that the difference between vehicles does not 
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appear to play a major role at least in this type of test and with this type of vehicle. 
Combining both sets of data and calculating the 90th percentile indicates that a phase 
score of about 33 would be appropriate. 

3.1.3 Proposed acceptance criteria 

Based on the results of the ten essentially identical full-scale crash tests summarised in 
Table 1, an absolute upper bound value of 30 could be used as acceptance criteria for 
both the magnitude and phase components of the Sprague-Geers metric when evaluating 
acceleration time histories from full-scale crash tests. The values were rounded to the 
nearest rational number for convenience. 

3.2 Analysis of variance metrics 

While the Sprague-Geers metrics assess the magnitude and phase of two curves, the 
ANOVA examines the differences or residual errors between two curves. The average 
and standard deviation of the residuals were evaluated for each time history in both the 
two sets of data and the results are shown in Table 1. For all ten experiments, the average 
residual error was always close to zero as expected. The standard deviations of the 
residual errors were always under 32% and in all cases but one less than 25%. Since  
the time histories for all the crash tests represented essentially identical physical events, 
the residuals for each curve should be attributable only to random experimental error or 
noise. Statistically speaking, this means that the residuals should be normally distributed 
around a mean residual error equal to zero. As shown in the cumulative density function 
in Figure 2, the shape of the residual accelerations distribution is typical of a normal 
distribution for both the two sets of crash tests when taken separately or combined. Since 
the cumulative distribution is an ‘S’ shaped curve centred on zero, the distribution of the 
residuals is consistent with random experimental error as would be expected in these 
series of repeated crash tests. This is a very strong indicator that the ten tests are, in fact, 
similar impact events. 

3.2.1 Average and standard deviation of residuals 
In a previous study, Ray (1996) applied the ANOVA metrics to a set of six identical 
frontal rigid pole impacts with a small passenger vehicle and reported the results 
proposing as acceptance criteria: (1) a mean residual error less than or equal to 5% and 
(2) a standard deviation of the residual less than 20%. Since the tests used in this earlier 
study were of a type that is presumed to be highly repeatable (i.e. the same type of 
vehicle and the same crash test facility was used, the barrier was a rigid instrumented 
pole and the impact was a centre-on full-frontal impact), it was not known if these 
criteria would be reflective of more general roadside hardware crash tests performed 
under less ideal conditions. The data in Table 1 indicate that the mean residual error 
criterion of less than 5% appears to be adequate since none of the comparisons for the ten 
tests analysed in this paper resulted in a mean residual greater than 2%. The standard 
deviation of the residuals, however, was higher in these test series than in the one 
reported by Ray in 1996. The highest standard deviation of the residuals (i.e. 32%) was 
found for Lab #4 in Set 2, the same test that resulted in an unusually high magnitude 
score for the Sprague-Geers metric. With that exception, the standard deviations were 
generally between 20% and 25%, a little higher than Ray originally proposed. 
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Figure 2 Cumulative density function of the residual accelerations for (a) Set 1, (b) Set 2  
and (c) the combination of Set 1 and Set 2 (see online version for colours) 

(a) Set#1 [True curve: Lab #1 (Set 1)]  

(b) Set#2 [True curve: Lab #1(Set 2) ]  

(c) All tests [True curve: Lab #1 (Set 1)]  
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3.2.2 T-test 

The third component to the ANOVA is the T-test. The T-test is a score based on the 
standard deviation and mean of the residuals. At the 90th percentile confidence interval 
for experiments with a large number of samples (i.e. over 500 data points), the critical  
T-score is ±2.67 as can be found in any standard statistics textbooks. The T-score 
calculated for the eight comparisons were all acceptable except one, Lab #5 in Set 2 
where the T-score was 6.27, well outside the acceptance range. The poor T-score in the  
case of Lab #5 in Set 2 strongly indicates there was some systematic error that caused  
the difference. Some of the T-scores, on the other hand, were less than unity indicating 
very high probability of representing the same physical event. 

Note that Lab #4 in Set 2 has the lowest T-score but the highest Sprague-Geers and 
standard deviation scores. This apparent contradiction could be explained by looking at 
the definition of the T-test itself, which is inversely proportional to the standard deviation 
of the residuals. From a practical point of view, it seems that when the standard deviation 
becomes too large, the T-test loses its diagnostic meaning as a comparison metric. This is 
the reason a limit is proposed for the mean residual and the standard deviation. When the 
standard deviation becomes very large, the 90th percentile envelope is also wide meaning 
that more divergent curves can still fit in the appropriate envelope. 

3.2.3 Proposed acceptance criteria 

Based on these comparisons and Ray’s 1996 work, the average residual error should be 
less than 5% and the standard deviation of the error should be less than 25%. The 
resulting T-score should also be less than or equal to 2.67 in order to satisfy the ANOVA 
criteria. 

4 Results using velocity time histories 

In practice, velocity time histories are often used rather than acceleration time histories 
primarily because they are less noisy and the trends are more easily apparent. The 
acceleration histories for the ten experiments were integrated to obtain the lateral 
velocities. The velocity time histories and the 90th percentile response corridors for the 
tests of Set 1 are shown in Figure 3. The velocity corridor is much narrower and 
smoother than the corresponding acceleration time history response corridor shown  
in Figure 1. 

4.1 Sprague-Geers metric 

Following the same procedure used to compare two acceleration time histories, the 
Sprague-Geers metric was used also to compare two velocity time histories. Table 2 
shows the values of the metrics calculated for Set 1. As shown in Table 2, the Sprague-
Geers magnitude and phase metrics are much smaller for the velocity time history 
comparison than was the case for the acceleration time history comparison. The highest 
magnitude score was 5.1 and the maximum phase score was 3.5. Using these values to 
compute, the 90th percentile range results in an acceptance value of less than 10 for both 
magnitude and phase, much less than the value of 30 recommended for the acceleration 
time histories. 
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Figure 3 Ninetieth percentile envelope and velocity time histories for Set 1  
(see online version for colours) 

 

Table 2 Values of the comparison metrics using velocity time histories for Set 1 

Metric 
Lab #2 
(Set 1) 

Lab #3
(Set 1) 

Lab #4
(Set 1) 

Lab #5
(Set 1) Meana Std. dev.a

Upper bound 
acceptance 

Sprague-Geers 
   Magnitude 0.5 5.1 4.5 –4.0 3.53 2.07 ±3.53 
   Phase 2.0 3.5 3.1 2.8 2.9 0.64 ±3.9 
ANOVA 
   Avg. residual 

error 0.0 –0.02 –0.02 0.04 0.02 0.02 ±0.05 

   Std. dev. of 
residuals 0.05 0.09 0.08 0.06 0.07 0.02 0.10 

   T-score 4.99 –16.38 –14.17 44.0    
aThe mean and standard deviation are calculated based on the absolute value of the metrics. 

4.2 ANOVA 

While the Sprague-Geers metric improved as the acceleration time history is integrated to 
a velocity time history, the ANOVA metrics became much worse. Although the average 
residual errors are still around zero and the standard deviation present small values, all 
the T-scores are unacceptably large with increases up to a factor of four. The reason for 
this poor performance with the velocity curves is that the integration process in essence 
accumulates the residual acceleration errors. When using an ANOVA technique, the 
evaluation of metrics should always be performed using time histories directly measured 
and not derived using either integration or differentiation. For example, if accelerations 
are measured experimentally, they should be the basis of the ANOVA comparison. 
Velocities and displacements, obtained by integrating the acceleration curve, will  
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accumulate error at each subsequent integration step. This is shown graphically in  
Figure 4 where the distribution of the residuals is more spread out and the mean is not as 
close to zero as it was in the case of the directly measured acceleration time histories 
shown in Figure 2. 

Figure 4 Cumulative density functions of the residual velocities for Set 1  
(see online version for colours) 

 

5 Discussion 

The purpose of the repeated crash test series was to explore how repeatable similar  
full-scale crash tests would be and to identify sources of possible discrepancies between 
test organisations. As discussed earlier, the results of the Sprague-Geers magnitude 
metric for Lab #4 in Set 2 represented a departure from most of the other test results and 
the ANOVA T-score for Lab #5 in Set 2 indicated a possible systematic error. During the 
ROBUST project, in fact, the investigation of all the test procedures and techniques used 
by the different test agencies actually identified several differences that could explain 
some of the discrepancies showed in this study. For example, it can be assumed that the 
different technique to mount the accelerometer block to the test vehicle used by each  
test agency had an effect on the acceleration time histories. In this case, a study 
performed during the Robust Project showed that a lightweight and more rigid block 
made of composite material can significantly improve the consistency of the testing 
results (ROBUST 2, 2006). This illustrates an important point: while two tests may be 
performed at the same impact conditions and use the same vehicle and barrier, the way 
data is collected and processed will also affect the results. The shape comparison metrics 
will be sensitive not only to differences in the impact conditions and test results but also 
in the way data was collected and processed. 
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In principle, the Sprague-Geers metric can be used to assess any type of shape: 
acceleration or velocity time histories. The data in Table 1 indicate that similar if not 
identical tests can still generate comparisons scores in the mid to upper 30s, whereas if  
the velocities are compared, the results for similar tests will generally be well under 10.  
The reason why the Sprague-Geers metrics give better results using velocities may be 
explained by the fact that the integration process acts like a filter on the original 
acceleration time histories, thus smoothing the high-frequency noise in the original 
curves. For this reason and because many analysts find them easier to interpret, it is 
recommended that velocity time histories be used for the evaluation of the Sprague-Geers 
metrics. If the magnitude and phase components result in values less than 10, the 
comparison can be considered valid. 

For the ANOVA metrics, it is recommended that the results are computed based on 
the time histories collected in the physical experiments (e.g. accelerations if the original 
data in crash tests were collected with accelerometers). In evaluating the ANOVA 
metrics for a series of six identical frontal rigid pole impacts, Ray proposed an 
acceptance criterion of a mean residual error less than 5% of the peak and a standard 
deviation of less than 20% of the peak test acceleration. As shown in Table 1 and 
discussed above, this is probably a bit too restrictive and should be changed to an average 
residual error of less than 5% and a standard deviation of less than 25%. While Table 1 
shows that the largest standard deviation of the residual error occurred in Lab #5 in Set 2 
(i.e. 32%), the authors believe that the improved data collection and processing 
techniques previously recommended should eliminate such high values. This should, 
however, be checked when and if additional repeated crash tests become available.  
The T-score aspect of the ANOVA should be less than or equal to 2.67 to ensure 90th 
percentile confidence that the error distribution is normally distributed and can be 
attributed to experimental error. 

In this study, one test exceeded the maximum T-score and two others were just below 
the limit of 2.67. A reason could be that the redirectional tests examined in this paper are 
much less repeatable than the frontal impact originally studied by Ray. The T-score 
criterion in some of these impacts can fail because the result of the test was, in actual 
fact, somewhat different even thought the initial impact conditions, vehicle and barrier 
were the same. For example, in a redirectional test, a slight difference in the suspension 
or steering system could cause a slightly different orientation of the front wheels which 
would in turn change the redirection angle and lateral forces. While the impact conditions 
may well be essentially identical, the result of the test may not be identical due to other 
uncontrollable variations in the experiment. Figure 5 shows the yaw-angle time histories 
of the two tests which gave the best and worst T-scores with the yaw-angle time history 
of the true curve for both Set 1 and Set 2. The yaw-angle time history in the best case is 
much closer to the yaw-angle history of the ‘true’ curve than in the worst case. In 
particular, the difference in the yaw-angle histories is more evident in Set 2, where  
the highest gap between the best and worst case occurred. The T-score component of the 
ANOVA metrics is, therefore, an extremely difficult test to pass. An acceptable T-score 
indicates not only that the impact conditions were similar but that the actual result of the 
test was very similar as well. 
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Figure 5 Yaw-angle time histories of the ‘true’ curve and the curves with the best and worst  
T-statistics for (a) Set 1 and (b) Set 2 (see online version for colours) 

(a)  

(b)  

6 Conclusions 

A comparison of ten repeated essentially identical crash tests was presented in this paper. 
Of the 16 different metrics found in literature by the authors, the magnitude and phase 
components of the Sprague-Geers metric were investigated to assess the similarity of 
magnitude and phase and the ANOVA metrics were investigated to examine the 
characteristics of the residual errors. The comparison metrics described in this paper were 
calculated using Matlab®. 
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The Sprague-Geers metric and the ANOVA metrics were used to quantitatively make 
comparisons between ten crash tests. Two sets of data were available, the first set of  
five tests used the same make, model and year of vehicle whereas the second set of  
five tests used different vehicles that met the requirements for the small car defined by 
EN 1317. The original raw time histories from the ten tests were filtered, re-sampled and 
synchronised in order generate accurate comparison results. The statistics derived from 
the analysis of the residuals confirmed the hypothesis that the errors were normally 
distributed and could, therefore, be attributed to normal random experimental error. 

Using the data from these ten tests, recommendations for acceptance criteria when 
comparing repeated crash tests or comparing a crash test to a computation result were 
presented. Namely: 

• When comparing two acceleration time histories from a crash test, the average 
residual error should be less than 5%, the standard deviation of the residual errors 
should be less than 25% and the T-score should be less than 2.67 for 90% 
confidence. 

• When evaluating velocity time histories obtained by integrating an acceleration time 
history from a crash test, the Sprague-Geers magnitude and phase metrics should be 
strictly less than 10. 

Roadside safety engineers and analysts should begin to use these comparison metrics to 
make objective decisions regarding the validity of computational solutions with respect 
to full-scale crash test results. The acceptance criteria suggested here may well change as 
the community begins to gain experience with using these types of quantitative metrics. 
The important point, however, is to use quantitative metrics in order that objective and 
mathematically precise values are the basis of comparisons and acceptance decisions. 
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Appendix 

A Analytical formulation of the MPC (Table 3) and single-value metrics (Table 4). 

Table 3 Definition of MPC metrics 
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Appendix (continued) 

Table 4 Definition of single-value metrics 
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Appendix (continued) 

B Values of the comparison metrics obtained by comparing the time histories from both Set 1 
and Set 2 (‘True’ curve: Lab #1 in Set 1) 

Table 5 Values of the comparison metrics considering the acceleration time histories of all the 
ten tests (Sets 1 and 2) 
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